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Abstract. The existence of a shock wave propagating in relativistic magnetofluids is assumed 
and the shock strength is determined. The jump discontinuities of the flow and field 
parameters across the shock wave are explicitly expressed in terms of parameters defined 
on the shock surface itself and the flow variables just on the upstream side of the shock. 
The flow gradients at the rear of the shock have been determined in terms of the flow 
parameters just ahead of the shock and their interior derivatives along the shock surface 
itself. The expressions for vorticity and current density generated by a hydromagnetic 
shock propagating in relativistic magnetofluids have been obtained. A few results of 
astrophysical interest have also been derived. 

1. Introduction 

Unless one is interested in very weak signals which occur in detection problems, either 
physical circumstances (the dense matter of certain astrophysical objects (Ruderman 
1972), the large velocities involved in galactic motions, the effects of strong magnetic 
fields (Ruderman 1972)) or the very nonlinearity of the field equations necessitates 
the study of nonlinear wave propagation in relativistic continuous matter. We deem 
our analysis important for the interpretation of phenomena connected with some 
astrophysical objects such as neutron stars, collapsed stars etc as they possess very 
strong magnetic fields of intensity ( 3  10" G) frozen into the matter, and very high 
electrical conductivity (Lichnerowicz 1970). Relativistic magnetohydrodynamical 
shock waves appear in the physics of the sun, the solar system and also the galaxies 
(Lichnerowicz 1970). 

A considerable amount of work has been done on nonlinear wave propagation in 
various models of relativistic continua. Taub (1 948) presented theoretical foundations 
of relativistic shock waves in a perfect fluid model. Hoffman and Teller (1950) gave 
an elegant relativistic treatment of magnetohydrodynamical shock waves. Lichnerowicz 
(1970, 1967, 1975), Saini (1961, 1976) and many others obtained general shock 
relations in relativistic magnetofluids. 

The problem of determining the differential effects of shock fronts on the flow 
variables has drawn the attention of several researchers striving for increasing general- 
ity. Thomas (1947) solved this problem for plane shocks in non-relativistic and 
non-conducting gases, and his results were extended by Kanwal (1958) for three- 
dimensional shocks in unsteady flows of ordinary gases. Ram and Mishra (1966) 
further generalised their results for hydromagnetic shocks in three-dimensional pseudo- 
stationary flows. Pant and Mishra (1965) solved this problem in the case of stationary 
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flows of conducting gases and obtained the expression for vorticity generated by the 
shock under the restriction that the magnetic field acts tangentially to the shock surface. 
Ram (1968) studied this problem in the case of unsteady flows of conducting fluids 
with no restriction on the magnetic field, and has drawn an interesting conclusion that 
the vorticity and current density generated by an oblique hydromagnetic shock in 
three-dimensional unsteady flows depend upon the dynamical as well as thermodynami- 
cal behaviour of the fluid. However, this problem does not appear to have been solved 
in the relativistic framework. The main academic interest of the present paper is to 
determine the jump discontinuities across a relativistic magnetohydrodynamic shock 
front and its differential effects on the flow and field variables, and to obtain expressions 
for the vorticity and current density generated by the shock. 

2. Basic preliminaries 

Let V ,  be an Einstein-Riemann space characterised by four coordinates 

x4 = ct xu = ( x k ,  x4), 

whose metric ds2, with signature (+  + + -), is expressible in the form 

ds2 = g,, dx" dxP, 

where g,, is the metric tensor of the space connected with the matter distribution in 
space-time through Einstein's field equations, t is the time and c is the velocity of 
light in vacuum. With the help of the world velocity U" such that 

g,,U"U~ = - 1 ,  

we define the invariant derivative Du = U"V,  where V u  represents the operator of 
covariant derivative. We can also define the field of spatial projectors by 

s a p  = g a p  + U"U@ 

S"", = 0 and s: = 3 .  
such that 

Here and in what follows the range of Latin indices is 1 , 2 , 3  and that of Greek indices 
is 1 ,2 ,3 ,4 .  A repeated index will usually imply summation unless specified otherwise. 

Within a material medium, a general electromagnetic field is represented by two 
skew-symmetric field tensors Ha, and G,, which satisfy the Maxwell equations 

vaHap = 0 and VaGUB = J p ,  

where Hap is the electric ,field-magnetic induction tensor, G,, the magnetic field- 
electric induction tensor, H a @  the dual tensor and J" the charge current four-vector. 
The spacelike four-vectors 

e, = U"Ha,, b, = U"Ha, 

are the electric field and the magnetic induction with respect to the timelike direction 
U" and esUB = bsUp = O .  If p is the constant magnetic permeability of the fluid, 
b, = ph,, where ha is the magnetic field vector. In a relativistic formulation, Ohm's 
law may be written as 

J" = &U" +Ae" 
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where E is the charge density and A the conductivity of the fluid. If we now assume 
that he" is finite, then for A = CO we have necessarily e" = 0 so that the electromagnetic 
field is reduced to the magnetic field with respect to the fluid. Furthermore, under 
the assumptions of infinite electrical conductivity and constant magnetic permeability, 
the Maxwell equations are reduced to 

V u (  U"hP - U p h a )  = O  

and the total energy-momentum tensor TUB of the fluid and electromagnetic field 
assumes the form 

Tap  = ( pc2+pe + p +  ph2)  U"Up + (p+ph2 /2 )gap  -ph"hP, 

which is symmetric and satisfies the invariant conservation law through Einstein's field 
equation. 

Here p ,  p, e and h respectively represent the fluid pressure, the particle density of 
the matter, the internal energy density and the intensity of the magnetic field where 

lhj2= haha > O .  

Taking the one-fluid approximation (no Hall effect, electron pressure gradient) 
and neglecting the dissipative processes and spin effects, the basic equations governing 
the flow of a relativistic thermodynamically perfect magnetofluid of infinite electrical 
conductivity and constant magnetic permeability p are (Lichnerowicz 1967) 

V,(pU")=O, 

V,T"' = 0,  

V p (  U"hP - U p h a )  = O ,  U"h, = 0 ,  

where 

T " P = w U a U P + ( p + p / 2 h 2 ) S " P - p h " h P ,  

w =pc2(1 +e/c2+ph2/2pc2) .  

Equations (2.1)-(2.3) yield the following equations: 

~ u c ~ D U U "  + V p  ( p + p / 2  h2)Sap - p U" U,  hPVph - ph'vph" - ph"VphP = 0,  (2.4) 

Du17 = 0 ,  

UaDUh" + V p h p  = 0 ,  

$Duh2+ h2VpUP - h,hPVpU" = O ,  (2.7) 
c2pfhaDuUa + h"V,p = 0 ,  

U,Vph" + h,V,U" = 0, 

where 

u = f + ph2/pc2, f = 1 + i / c2 .  

Here i, q and f respectively represent the specific enthalpy, the entropy per unit mass 
in the instantaneous rest frame and the index of the fluid (Lichnerowicz 1970). 

In view of the thermodynamical relation 
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equation (2 .5)  assumes the form 

DUp+a2pVuU" = O  

where 

a 2 =  YPlP, Y = CplCV.  

(2.10) 

3. Jump discontinuities 

Let X(x") be a time-like regular hypersurface which propagates in the space V,, and 
thus separates the space-time into two subregions in either of which the fundamental 
equations have a continuous solution, but there occurs a strong discontinuity across 
the wave surface Z ( x H ) .  Such a surface across which the flow parameters undergo 
finite jumps is called a shock wave. 

Let a quantity Z,  if evaluated upstream (downstream) from the shock surface, be 
denoted by Z , ( Z ) .  Let [ Z ]  denote the jump in the quantity enclosed as it crosses the 
shock surface. Then the jump conditions expressing the values of the flow variables 
just behind in terms of those just ahead of the shock surface are (Lichnerowicz 1970) 

where Nu are the components of the unit four-vector normal to the surface such that 

NON, = 1. 

When the magnetic field acts transversely to the direction of propagation of the surface, 
h"Nu =0, and hence from (3.1H3.3) we get 

( ( 6  + 2 ) p 1 y +  p1c2(1 + 6 ) ( y -  1))sV:- (p /2 ) (  y -  1)(1+ s)2(s2+ 26)h:  
( y -  1)( 1 + S ) 2 +  yv: 9 (3 .4 )  [ P I  = 

[ h p ]  = S h f ,  

[ h 2 ]  = ( S 2 + 2 S ) h : ,  

[ P I  = 6P1, 

where URNn = V and S is the density strength of the shock, which is given by 

<v: + (1 +" ( p / 2 ) ( 6 Z + 2 w : l { [ P 1 +  ( p / 2 ) ( s 2 + 2 s ) h :  -2PlUl Vk21 

+ v:c2)2 = 0. (3.9) 

Equations (3.4)-( 3.9) determine the shock discontinuities explicitly in terms of the 
shock parameters and the flow parameters just ahead of the shock wavefront. 
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4. Determination of the flow gradients at the rear of the shock 

The geometrical and kinematical compatibility conditions of first order of a time-like 
regular hypersurface of the space V,  are (Maugin 1976) 

where 

Du U"V,, DN N"V,, 

D ; z E  gapVpZ-N"DNZ= aiJx:Z;j. 

Here DNZ and D&Z represent the covariant derivative of Z along the normal and 
the tangent to the shock respectively; UaD;Z is the generalised form of the 6, 
derivative of Thomas (1957); uii is the first fundamental form of the metric tensor of 
the shock surface; a semicolon followed by a Latin index denotes covariant diff erenti- 
ation with respect to the corresponding parametric coordinate of the shock surface. 
We assume, for simplicity, that the flow ahead of the shock is uniform and known. 
Keeping in mind the aforementioned assumptions and taking jumps in (2.1), (2.3), 
(2.4), (2 .7) ,  (2.8) and (2.10) with the help of (4.1) and (4.2), we obtain 

(4.3) 

(4.4) 

VDNp + U,D;p + pN,DNU" + pgapD$ U" = 0,  

- hPgvpD>U" - U"g,pD>hp = O ,  

V&h" + U@$ U" + h"NpDNUp - uaNpDNhP i- h"g,pD> U p  

c 2 p ~ V D N U "  + c 2 p u u p D ~ u "  + DNpSapNp + gVpD>pSap + (p /2 )DNh2SopNp  

+ ( p / 2)gvpD > h ' S a p  - p h"NpDNhp - p U a UyhPgupD ';. h 

-phPgvpDt;.h" -ph"g,pDt;-hP = O ,  (4.5) 
( p  / 2) V&h2 + ( p /  2)  URD; h2 + ph2NaDNua + phzgypD> U p  - ph,hPgvpD> U" = 0,  

(4.6) 

(4.7) C2pfvuaDNh" + c2pfU,UpD$h" - hPg,pD>p=O, 

VDNp+ U,D~p+pa2NaDNU" +pa2gvpD>UB = O .  (4.8) 

Contracting (4.5) with Nu, we get 

c2PUVN,D~U" + ( I +  V2)&p+ ( p / 2 ) ( 1 +  v2)&h2+ C2pUN,upD$u" 

+ VUpDP,p + ( p / 2)  VUpDP, h2 - p VUyhpDP, h 

-pNahpD$h" = O .  

Eliminating DNh2 from (4.6) and (4.9), we obtain 
(4.9) 

{c2puV2-ph2(1  + Vz)}NaDNU"+ V(1+ V2)DNp 

+ C ~ ~ U V N ~ U ~ D $ U " - ( ~ / ~ ) ( ~  + V2)Upd$-h2 

+ V 2  UpDP,p + ( p / 2 )  V 2  UpD$h2 - pVNahpDP,ha - p V 2  U,hpD$h 

- p h'( 1 + V 2 )  gvpD > U p  + ph,  ( 1 + V 2 )  hpD$ U" = 0. (4.10) 



1552 H N Singh 

Eliminating N,DNU" from (4.8) and (4.10), we get 

DNp = V -  ' { V 2  ( C' U - a f ) - a f }-' { PU VU c 'Nu Up D$ U " 
+ a 2  V 2  U,D$p+ (p /2 )  V 2 a 2 U , D ~ h 2 - 2 p V 2 a 2 U y h s D ~ h y  

- pa U, h,D$ h " - pa VNa h, D$ U " - c2a V2pugvPD t; U' 

- (p /2 )a2(1  + V 2 ) U a D ~ h 2 - ~ ~ 2 V 2 U a D ~ p + p h 2 ( 1 +  V2)UaDO;p}, 
(4.11) 

where a: = a2+ph2/p is the effective velocity of sound. 
From (4.4), (4.7) and (4.8), we obtain 

DNh " = { c'pfu v}-'{ c 2 f (  vh"DNp + ha U,D$p 

+ pa hpD$ U" - pa U, D$ ha ) - a U" hp D$p}. (4.12) 

In view of (4.3), we have 

DNp = - V-'{pNaDNU" + UaD;p + pg,,D~Uup}. (4.13) 

Elimination of NaDNU" from (4.6) and (4.8) yields 

DNh2 = { pa2 V}- ' {  2 Vh2DNp + 2 h2 U, D;p - pa2 U,D; h2 + 2pa ha h, 0% U"}. 

From equation (4.3, we get 

(4.14) 

DNU = { C * ~ U  V }  - ' { p h DNh ' - ( DNp + p / 2 DNh ') S "'Np 

- c2p~UpD$ U" - S"'g,,D 'f ( p + p /2  h2) 

+ pUU"U,h,D$hY + phpD$h" + ph"g,,D",hP}. (4.15) 

Equations (4.1 1)-(4.15) show that the necessary and sufficient conditions for the 
existence and uniqueness of flow behind a shock wave are given by 

V Z O ,  V2(2a-  a : )  - a: # 0. 

The first condition V # 0 suggests that the discontinuity appearing in the flow under 
consideration is not a tangential discontinuity, whereas the second condition { V2( c2a - 
a : )  - a : }  # 0 suggests that the discontinuity under consideration is not a sonic discon- 
tinuity. This implies that a shock wave is neither a tangential discontinuity nor a sonic 
discontinuity/weak wave. 

The surface derivative and 8, derivative of N u  and V are obtained (Maugin 1976) 
in the following form: 

(4.16) N;k =-  bkma"X; = - aimXykmX;N,, 

(4.17) 

(4.18) 

where b, are covariant components of the second fundamental tensor of the shock 
surface. 

Applying the operator U,D$ on (3.4)-(3.8) and using (4.17) and (4.18), we can 
obtain expressions for U,D$U", U,D$h", U,D$h2, U,D$p and U,D$p. Similarly, 
expressions for D$U", DTh", DTh2, D$p and D$p can be obtained. Thus the above 
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quantities involved in the expressions for gradients are expressible in terms of known 
quantities. Such quantities depend upon the shape, speed and strength of the shock 
and the flow and field parameters just ahead of the shock. 

5. Determination of vorticity and current density 

The components of vorticity and current density are given by 

W" =17;f&;U6, (5.1) 

( 5 . 2 )  cl -1 a P Y s  
J - 2 7 ) V p ( U , h 6 ) ?  

where qaPys=  ( - g 1 1'2 E a P y s  7 E~~~~ being the four-dimensional permutation tensor. 
Taking jumps of (5.1) and ( 5 . 2 ) ,  we get 

[ W" 1 = 3 1 7 a P y S  ( D,&'pN7Ua +g,,D;Up ua 7 

[ J  " 1 = 7 ( a P Y s  DNU& ha + D,vhaNp U,+g,pD ;U,ha +g,pD ;ha u7 ) ' 

(5.3) 

(5.4) 

Contracting (5.3) and (5.4) with N,, we obtain 

In view of (4.11), (4.12) and (4.15), equations (5.3) and (5.4) indicate that the vorticity 
and current density generated by the shock can be derived purely from dynamical 
considerations. A similar result holds in the non-relativistic frame also. Furthermore, 
contractions of (5.3) and (5.4) with U, yield 

W"U, = 0 ,  (5.7) 

J"U, = - W"h,. ( 5 . 8 )  

Equation ( 5 . 7 )  shows that the vorticity generated by the hydromagnetic shock is 
orthogonal to the world velocity. 

Contracting (5.4) with h,, we get 

J"h, = - 2@aU, (5 .9 )  

@ ' " - 2 7 h p , , h a 3  - L  4 r s  

where 

which has already been defined by Bray (1975) as the magnetic vorticity. 

(5.8) and (5.9) assume, respectively, the forms 
Taking decomposition of the electric current into conduction and convection parts, 

W"h, = E ,  (5.10) 

w Y a  = 0. (5.11) 

Equation (5.10), which implies that the charge distribution depends on the magnetic 
field strength and on the vorticity relative to the local inertial frames, confirms 
Bekenstein's prediction (Bekenstein and Oron 1979) for the interior magnetohydro- 
dynamic structure of a relativistic neutron star. Equation (5.11) shows that the magnetic 
vorticity is orthogonal to  the world line. 
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The results derived herein are expected to be of great interest for relativistic 
astrophysics (Ruderman 1972, Bray 1975, Bekenstein and Oron 1979). They may be 
useful for the ‘seismology’ of massive stellar objects in which a relativistic treatment 
is expected. The interior of neutron stars and pulsars and the gas clouds in galaxies 
may be regarded as an ideal, infinitely conducting single fluid with a frozen-in magnetic 
field (Bekenstein and Oron 1979, Ruffini 1975). The appearance of shock waves in 
such astrophysical objects generates vorticity in the superfluid which mimics the 
behaviour of a rqtating magnetofluid. The differential identities may be useful for 
investigation of the magnetic structure of a rotating neutron star’s interior and the 
orientation of fields in astrophysical objects like galaxies, pulsars, gravitational collapse, 
sun spots and spiral arms. Detailed applications of the results to more general situations 
of astrophysical and cosmological importance are under current investigation and will 
be published elsewhere. 
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